Geometrically Constructed Bases for Homology of Partition Lattices of Types A, B and D

نویسندگان

  • Anders Björner
  • Michelle L. Wachs
چکیده

We use the theory of hyperplane arrangements to construct natural bases for the homology of partition lattices of types A, B and D. This extends and explains the “splitting basis” for the homology of the partition lattice given in [20], thus answering a question asked by R. Stanley. More explicitly, the following general technique is presented and utilized. Let A be a central and essential hyperplane arrangement in Rd. Let R1, . . . , Rk be the bounded regions of a generic hyperplane section of A. We show that there are induced polytopal cycles ρRi in the homology of the proper part LA of the intersection lattice such that {ρRi}i=1,...,k is a basis for H̃d−2(LA). This geometric method for constructing combinatorial homology bases is applied to the Coxeter arrangements of types A, B and D, and to some interpolating arrangements.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

an 2 00 4 GEOMETRICALLY CONSTRUCTED BASES FOR HOMOLOGY OF PARTITION LATTICES OF TYPES

We use the theory of hyperplane arrangements to construct natural bases for the homology of partition lattices of types A, B and D. This extends and explains the " splitting basis " for the homology of the partition lattice given in [19], thus answering a question asked by R. Stanley. More explicitly, the following general technique is presented and utilized. Let A be a central and essential hy...

متن کامل

Geometrically Constructed Bases for Homology of Non-Crossing Partition Lattices

For any finite, real reflection group W , we construct a geometric basis for the homology of the corresponding non-crossing partition lattice. We relate this to the basis for the homology of the corresponding intersection lattice introduced by Björner and Wachs in [4] using a general construction of a generic affine hyperplane for the central hyperplane arrangement defined by W .

متن کامل

Semi-G-filters, Stonean filters, MTL-filters, divisible filters, BL-filters and regular filters in residuated lattices

At present, the filter theory of $BL$textit{-}algebras has been widelystudied, and some important results have been published (see for examplecite{4}, cite{5}, cite{xi}, cite{6}, cite{7}). In other works such ascite{BP}, cite{vii}, cite{xiii}, cite{xvi} a study of a filter theory inthe more general setting of residuated lattices is done, generalizing thatfor $BL$textit{-}algebras. Note that fil...

متن کامل

A degree bound for the Graver basis of non-saturated lattices

Let $L$ be a lattice in $ZZ^n$ of dimension $m$. We prove that there exist integer constants $D$ and $M$ which are basis-independent such that the total degree of any Graver element of $L$ is not greater than $m(n-m+1)MD$. The case $M=1$ occurs precisely when $L$ is saturated, and in this case the bound is a reformulation of a well-known bound given by several authors. As a corollary, we show t...

متن کامل

Completeness results for metrized rings and lattices

The Boolean ring $B$ of measurable subsets of the unit interval, modulo sets of measure zero, has proper radical ideals (for example, ${0})$ that are closed under the natural metric, but has no prime ideal closed under that metric; hence closed radical ideals are not, in general, intersections of closed prime ideals. Moreover, $B$ is known to be complete in its metric. Togethe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2004